
Dominated Strategies
A strategy is said to be dominated by a second strategy if the second
strategy always results in at least as good an outcome for the player, no
matter what strategy the other player chooses, and results in a better
outcome for at least one of the opponent’s strategies. We call the inferior
strategy a dominated strategy. A strategy which dominates all others is
called a dominant strategy. It must be unique.

I Recall our example from the previous section, where two fitness
companies were trying to decide where to set up their new
Gymnasiums. The payoff matrix is shown below

I

Fitness Indiana
First Second

Neighborhood Neighborhood
First Neighborhood (1500, 3500) (5000, 3000)

Get Up ’n Go
Second Neighborhood (3000, 5000) (900, 2100)

I Does either business have any dominated or dominant strategies? .
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Dominated Strategies
The strategy “Second Nbhd.” is dominated by the strategy “First Nbhd.”
for Fitness Indiana because the strategy “First Nbhd.” always results in
at least as good an outcome for Fitness Indiana, no matter what strategy
Get Up and Go chooses, and results in a better outcome for at least one
of Get Up and Go’s strategies(in fact all in this case). The strategy
“Second Nbhd.” is a dominated strategy for Fitness Indiana. Because
the strategy “First Nbd.” dominates all others, it is called a dominant
strategy for Fitness Indiana.

Fitness Indiana
First Second

Neighborhood Neighborhood
First Neighborhood (1500,3500) (5000, 3000)

Get Up ’n Go
Second Neighborhood (3000, 5000) (900, 2100)

I It would be unwise of Fitness Indiana to choose the strategy
“Second Nbhd.” here. Since the pay-off matrix is public information,
both business’ know that Fitness Indiana will not go for this option
and it can be eliminated from the matrix. .

.
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Reduced Payoff Matrix
After we remove the dominated strategy for Fitness Indiana, we get a
new pay-off matrix:

I

Fitness
Indiana

First
Neighborhood

First Neighborhood (1500, 3500)
Get Up ’n Go

Second Neighborhood (3000, 5000)

I In this new matrix, are there any dominated or dominant strategies
for Get Up and Go? .

.
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Reduced Payoff Matrix
After we remove the dominated strategy for Fitness Indiana, we get a
new pay-off matrix:

I

Fitness
Indiana

First
Neighborhood

First Neighborhood (1500, 3500)
Get Up ’n Go

Second Neighborhood (3000, 5000)

I We see that for Get Up and Go, the strategy “Second
Neighborhood” dominates the strategy “First Neighborhood” and
because we have only two strategies, the strategy “Second
Neighborhood” is a dominant strategy.

I Since both business’ want to maximize the number of customers the
get, it would be foolish for Get Up and Go to set up their gym in the
“First Neighborhood” and we might as well further reduce the payoff
matrix by removing this strategy.
.
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Reduced Payoff Matrix
Finally we are left with the reduced payoff matrix

Fitness
Indiana

First
Neighborhood

Get Up ’n Go Second Neighborhood ( 3000, 5000)

I We see that if both players seek to maximize the number of
customers they get and both have complete information about the
payoff matrix, Get Up and Go will choose the Second Neighborhood
and Fitness Indiana will choose the First Neighborhood.

I Since there are no dominated strategies in this final matrix with only
one strategy for each player, it is called a reduced Payoff matrix.
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Reduced Payoff Matrix
The Reduced Payoff Matrix of a game is a submatrix of the game where
dominated strategies have been eliminated in one or more stages. It gives
the relevant portion of the original payoff matrix under the assumption of
best play by both players.

I The reduced payoff matrix is not always a 1× 1 matrix, it may be
larger. Its distinguishing characteristic is that neither player has a
dominated strategy in the reduced matrix.

I If the reduced payoff matrix has a single strategy for each player,
neither player has an incentive to change strategy if the other player
sticks with the strategy given in the reduced matrix. Thus this is a
point of equilibrium.
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Equilibrium Point
An Equilibrium Point of a game is a pair of strategies such that neither
player has any incentive to change strategies if the other player stays with
their current strategy.

I In the example from Dutta, we found that the payoff matrices for
the swimmer Rogers were different depending on whether the IOC
performed a drug test or not. The pay off matrices are given below
where b is a very large number:

No Testing (Probabilities)

Carter
d n

d 0.5 1
Rogers

n 0 0.5

IOC Testing (Expected Payoff)

Carter
d n

d
`
− b

2
,− b

2

´ `
− b

2
, 0

´
Rogers

n
`
0,− b

2

´
(0, 0)

.
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Equilibrium Point
An Equilibrium Point of a game is a pair of strategies such that neither
player has any incentive to change strategies if the other player stays with
their current strategy.
Rewriting the matrices with both payoffs shown, we see that the
highlighted points are equilibrium points.

No Testing (Probabilities)

Carter
d n

d (0.5, 0.5) (1, 0)
Rogers

n ( 0, 1) (0.5, 0.5)

IOC Testing (Expected Payoff)

Carter
d n

d
`
− b

2
,− b

2

´ `
− b

2
, 0

´
Rogers

n
`
0,− b

2

´
(0, 0)

I In particular, we see that with testing the incentive for both
swimmers switches from taking the drugs to not taking the drugs.
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How de we find Equilibrium Points
An Equilibrium Point is Stable and once it is reached, it will generally
persist through repeated playing of the game. When a game is not at an
equilibrium point, at least one player has an incentive to change
strategies, such a point is called unstable. A game may have
a unique equilibrium point, more than one equilibrium point or
no equilibrium points.

I If the reduced payoff matrix has just a single strategy for both
players, then this combination of strategies is an equilibrium point in
the original and the reduced payoff matrix.
For our previous example the red rows and columns shown below are
dominated and are removed in the reduced matrices:
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A systematic method to find Equilibrium Points
Not all reduced payoff matrices will have just a single strategy for both
players. We can find the equilibrium points of a payoff matrix
systematically as follows:

I We compute the maximum payoff for the row player in each column
I and the maximum payoff for the column player in each row
I if a combination of strategies (a matrix entry) simultaneously give

the maximum for the row player in its column and the maximum for
the column player in its row, then this is an equilibrium point.

I Example: Rose and Colin are playing a game where each has three
strategies with payoff matrix is shown below:

C1 C2 C3
R1 (6. 4) (7, 1) (8, 6)
R2 (1, 2) (9, 5) (4, 7)
R3 (8, 8) (6, 2) (3, 3)

.
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Dominated Strategies and reduced matrices in a Constant Sum Game

For a constant sum game or a zero-sum game, we just write the payoff
for the row player since we can deduce the payoff for the column player
from it.

I In this case a dominated strategy for the row player corresponds to a
row where the entries are less than or equal to the corresponding
entries in another row (the dominating strategy).

I A dominated strategy for the column player corresponds to a column
whose entries are greater than or equal (since the entries are payoffs
for the row player) to the corresponding entries in another column
(the dominating column).
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Dominated Strategies and reduced matrices in a Constant Sum Game

A (hypothetical) baseball pitcher throws three pitches, a fastball, a slider and a
change-up. We might use the expected number of runs the batter creates in
each situation as the payoff here. For any given pitch, the batter’s performance
is better if he anticipates the pitch (correctly). Lets assume that the batter has
four possible strategies, To anticipate either a fastball, a slider or a change-up
or not to anticipate any pitch.

Pitcher
Fastball Change-up Slider

Fastball 0.3 0.3 0.35

Change-up 0.25 0.4 0.4
Batter

Slider 0.2 0.39 0.45

None 0.3 0.39 0.4

I The strategy “Slider” is dominated for the pitcher since the payoff for R is
greater (or equal) no matter which strategy R uses when the pitcher
pitches a Slider. We can thus reduce the payoff matrix by eliminating this
strategy for C .

.
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Dominated Strategies and reduced matrices in a Constant Sum Game

The reduced matrix looks like this:

Pitcher
Fastball Change-up

Fastball 0.3 0.3

Change-up 0.25 0.4
Batter

Slider 0.2 0.39

None 0.3 0.39
.
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The reduced matrix looks like this:

Pitcher
Fastball Change-up

Fastball 0.3 0.3

Change-up 0.25 0.4
Batter

Slider 0.2 0.39

None 0.3 0.39

I We can further reduce this matrix by striking out the dominated strategies
for R.
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Dominated Strategies and reduced matrices in a Constant Sum Game

The reduced matrix looks like this:

Pitcher
Fastball Change-up

Fastball 0.3 0.3

Change-up 0.25 0.4
Batter

Slider 0.2 0.39

None 0.3 0.39

I We can further reduce this matrix by striking out the dominated strategies
for the batter.

I The strategy “Anticipate Slider” for the batter has a lower payoff than
that of “Anticipate Change-Up” no matter which pitch is thrown.

I Thus we can discard the strategy “Anticipate Slider” for the batter since
it would be foolish for the batter to use this strategy and we are assuming
that neither player is foolish.
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Dominated Strategies and reduced matrices in a Constant Sum Game
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I Now in this matrix, we see that the strategy “Change-Up” is a dominated
strategy for the pitcher, because no matter what the batter anticipates,
the payoff is greater (or equal) for the pitcher if the pitch a fastball
instead of a Change-Up.

I The new reduced matrix looks like :
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Dominated Strategies and reduced matrices in a Constant Sum Game

Striking out dominated strategies for the batter, we get:
Pitcher
Fastball
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Change-up 0.25
Batter

None 0.3
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Pitcher
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I This is the reduced matrix since there are no dominated strategies.
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Equilibrium Points in a Constant Sum Game
In the case of zero-sum or constant-sum games an equilibrium point is called a
saddle point. The value of the pay-off matrix at that position is called the
value of the game.

I If an equilibrium point exists in the game, it occurs at a point which is
simultaneously the minimum in its row and the maximum in its column
(since neither player has an incentive to change strategy at that point).

I Although the equilibrium point may not be unique, if there are multiple
equilibrium points for the game, all will give the same value (payoff for the
row player).

I To find equilibrium points for constant-sum games, we can calculate the
minimum for each row and the maximum for each column and see if any
entry in the matrix simultaneously gives the minimum in its row and the
maximum in its column.
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Saddle Points in a Constant Sum Game, Example
For our previous example we apply our method to find the saddle points. We
calculate the minimum in each row and the maximum in each column.

Pitcher

Fastball Change-up Slider Min.
Fastball 0.3 0.3 0.35 0.3

Change-up 0.25 0.4 0.4 0.25
Batter

Slider 0.2 0.39 0.45 0.2

None 0.3 0.39 0.4 0.3

Max. 0.3 0.4 0.45
.
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For our previous example we apply our method to find the saddle points. We
calculate the minimum in each row and the maximum in each column.
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Change-up 0.25 0.4 0.4 0.25
Batter

Slider 0.2 0.39 0.45 0.2

None 0.3 0.39 0.4 0.3

Max. 0.3 0.4 0.45

I We see that there are two saddle points, One where the pitcher pitches
a fastball and the batter anticipates a fastball, the other where the pitcher
pitches a fastball and the batter does not anticipate any serve.

I The value of the game is 0.3. This is the payoff for the batter at all of
the saddle points.
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Saddle Points in a Constant Sum Game, Example
In the example from Winston in the last section, the football team on offense
had the options of running or passing the ball and the team on defense could
choose a run defense or a pass defense. We got the following pay-off matrix for
the team on offense using expected gain in yards for each situation:

Defense
Run Pass

Defense Defense
Run -5 5

Offense
Pass 10 0

(a) Does this matrix have a saddle point? .

.
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Choosing a Strategy for a Zero-Sum Game
From now on, we will specialize to the case of two-person zero-sum (or
constant-sum) simultaneous move games which we will just refer to as a “a
zero-sum game”. We make the following assumptions about the players:

I Both wish to maximize their payoff,

I Each player has full knowledge of the payoff matrix,

I Their opponent will play intelligently and wishes to maximize their own
payoff.

I Note that in a zero sum game The column player maximizes their payoff
by minimizing the row players payoff.

I For a zero-sum game or a constant-sum game with a saddle point, if the
above assumptions hold and the game is played repeatedly the play will
eventually stabilize at the saddle point.
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Choosing a Strategy for a Zero-Sum Game
A player is said to play a fixed strategy or a pure strategy if the player always
plays the same row (for a row player) or column (for a column player).

I For a zero-sum game or a constant-sum game, if an equilibrium point
exists (at least one), then we say that the game is strictly determined.

I When a game is strictly determined we have: The best strategy for both
players is a fixed strategy (as we will see below) with the row player
playing at the row in which the saddle point occurs and the column player
playing at the column in which the saddle point occurs.

I The value of the game is the long run expected payoff for the row player
R when the game is played repeatedly since neither player will have any
incentive to choose a different strategy than the one at the saddle point.

I Above, we saw that a saddle point does not always exist in a zero-sum
game. In this case it turns out that a mixed strategy is better to maximize
long run expected payoff.
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Example: Strictly Determined Game
In our example from baseball above, we see that the best strategy for both
players is a fixed strategy.

I

Pitcher
Fastball Change-up Slider Min.

Fastball 0.3 0.3 0.35 0.3

Change-up 0.25 0.4 0.4 0.25
Batter

Slider 0.2 0.39 0.45 0.2

None 0.3 0.39 0.4 0.3
Max. 0.3 0.4 0.45

I The best strategy for the pitcher here is to always pitch a fastball and the
best strategy for the batter is to always anticipate a fastball (or not to
anticipate any particular pitch since we have two saddle points)

I The value of the game is 0.3 which is the expected number of runs created
per pitch for the batter (if this batter and pitcher play fixed strategies at
the saddle points many times or if they play this game repeated many
time(in which case the play will move towards equilibrium play)

I Since this is a zero sum game the expected payoff for the pitcher is −0.3.
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Not a Strictly Determined Game
On the other hand, our example from Football did not have a saddle point and
therefore a fixed strategy was not the best option for either player.

I

Defense
Run Pass

Defense Defense Min.

Run -5 5 -5
Offense

Pass 10 0 0

Max. 10 5
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Mixed Strategy
Due to the lack of time, we will limit our study of mixed strategy to games
with two players each of which has two possible (fixed) strategies. Although
simplified, it is enough to grasp the flavor of the subject.

I A mixed strategy for a player with two strategies, A and B, is a choice of
probabilities p1 and p2 with 0 ≤ p1, p2 ≤ 1 and p1 + p2 = 1.

I The player selects strategy A with probability p1 and strategy B with
probability p2.

I The player should make the choice
in random way so that his/her
opponent cannot detect a pattern
in his/her play ( for example, the
player might use a device such as
the the spinner shown to select
his/her strategy on the next play).

I The row player’s mixed strategy is represented as a row
`

p1, p2

´
and

the column player’s mixed strategy is represented as a column

„
p1

p2

«
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Mixed Strategy

Recall our example from fencing
where both players had the option of
attacking(A) or holding back (H) at
the beginning of each bout with the
following pay-off matrix showing the
expected number of points for Rhonda
for each situation:

Cathy
A H

A 0.5 -0.2
Rhonda

H -0.3 0.5

.

I If Rhonda plays the mixed strategy of
`

0.5, 0.5
´
, it means that she

attacks off the line 50 percent of the time and she holds back 50% of the
time. she does this in an unpredictable way, so that her opponent does
not know whether she will attack or hold back at the beginning of the
next bout.

I If Cathy plays

„
0.7
0.3

«
, this means that Cathy attacks off the line 70%

of the time and she hold back 30% of the time and her choice for the next
bout cannot be predicted by her opponent.
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Deciding Between Strategies
We use expected payoffs to decide between strategies.

I For the row player, R, the strategy which maximizes his/her
expected payoff should be chosen

I and for the column player, C , the strategy which minimizes R’s
expected payoff (maximizes C ’s expected payoff) is the preferred
one.

I When both players have only two strategies, calculating the
expected payoff for R when you know the strategies for both players
is relatively easy. When more strategies are involved it is best to
calculate with matrix multiplication.
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Expected Payoff for mixed strategies
Lets suppose that we have two players, R and C , playing a zero-sum,
simultaneous move game. It is implicitly assumed that the players make
their choice of strategy independently of each other.

I We assume that R has two
strategies R1 and R2 and C also
has 2 strategies C1 and C2 and
that the payoff matrix for R is
given by

C
C1 C2

R1 a b
R

R2 c d

I We assume that R is playing the mixed strategy (p1, p2) and C is

playing the mixed strategy

(
q1

q2

)
.

I Because the players choose their strategies independently the
probability that R will choose R1 and C will choose C2 is p1q2

(from our formula for independent events P(A ∩ B) = P(A)P(B)).
I Notice that the payoff for R is a random variable, X , and its value

depends on which of the four situations occurs.
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Expected Payoff for mixed strategies

If R plays the mixed strategy
(p1, p2) and C plays the mixed

strategy

(
q1

q2

)
and the payoff

matrix is given by:

C
C1 C2

R1 a b
R

R2 c d

We let X denote the payoff for R on each play of the game. What is the
probability distribution of the random variable X and what is its expected
value?

I

Choice X = Probability XP(X )
Pay-off for R

R1C1 a (p1)(q1) a(p1)(q1)
R1C2 b (p1)(q2) b(p1)(q2)
R2C1 c (p2)(q1) c(p2)(q1)
R2C2 d (p2)(q2) d(p2)(q2)

E(X ) = (ap1 + cp2)(q1)+
+(bp1 + dp2)(q2)
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Example: Expected Payoff for mixed strategies

Consider the example of a zero-sum
game from fencing above with payoff
matrix :

Cathy
A H

A 0.5 -0.2
Rhonda

H -0.3 0.5

Assume that Rhonda(R) plays (0.5, 0.5) and Cathy(C) plays

„
0.7
0.3

«
,

calculate the expected payoff for R. What is the expected payoff for C?

I
Choice Pay-off for R Probability XP(X )
RACA 0.5 (0.5)(0.7) = 0.35 0.175
RACH −0.2 (0.5)(0.3) = 0.15 −0.03
RHCA −0.3 (0.5)(0.7) = 0.35 −0.105
RHCH 0.5 (0.5)(0.3) = 0.15 0.075

E(X ) = 0.115

I The expected payoff for R is 0.115 ≈ ave.# points per game for R if both
players fence many times with the above strategies.

I The expected payoff for C is −0.115 ≈ ave.# points per game for C if
both players fence many times with the above strategies.
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Example: Expected Payoff for different mixed strategies

Suppose now that C continues to play

the strategy
„

0.7
0.3

«
, bur R switches

to the strategy (0.2, 0.8), what is the
expected payoff for R?

Cathy
A H

A 0.5 -0.2
Rhonda

H -0.3 0.5

I
Choice Pay-off for R Probability XP(X )
RACA 0.5 (0.2)(0.7) = 0.14 0.07
RACH −0.2 (0.2)(0.3) = 0.06 −0.012
RHCA −0.3 (0.8)(0.7) = 0.56 −0.168
RHCH 0.5 (0.8)(0.3) = 0.24 0.12

E(X ) = 0.01

I Assuming that C continues to play the strategy
„

0.7
0.3

«
.....

I if R plays (0.2, 0.8), R’s expected payoff will be 0.01,

I On the other hand if R plays (0.5, 0.5), R’s expected payoff will be 0.115,

I thus if R is choosing between strategies (0.2, 0.8) and (0.5, 0.5), the latter
is the better strategy.
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Best Mixed Strategy for R
We would like to find the best mixed strategy for R.

I The trick to figuring this out is to anticipate how C will act (to
minimize R’s expected payoff) for any given strategy that R might
adopt.

I The first thing we will show is that no matter what strategy R
adopts, C can minimize R’s payoff with a pure strategy,

I that is whatever R’s strategy is, C ’s best counterstrategy will be

either
„

0
1

«
or

„
1
0

«
.

I We will then use this information to pick the strategy for R. Given
that C will hold R’s expected payoff to a minimum, we will choose
the strategy for R which maximizes these minima. This is often
called minimax theory for obvious reasons.
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Best Counterstrategy for C

From our previous calculations, if
R plays any strategy (p, 1− p) and

C plays
„

q1

q2

«
with payoff matrix:

C
C1 C2

R1 a b
R

R2 c d

I then E(X ) = (ap + c(1− p))q1 + (bp + d(1− p))q2.

Choice X = Probability XP(X )
Pay-off for R

R1C1 a (p)(q1) a(p)(q1)
R1C2 b (p)(q2) b(p)(q2)
R2C1 c (1− p)(q1) c(1− p)(q1)
R2C2 d (1− p)(q2) d(1− p)(q2)

E(X ) = (ap + c(1− p))(q1)+
+(bp + d(1− p))(q2)

I For any given value of p, let J = (ap + c(1− p)) and let
K = (bp + d(1− p)).

I Then the expected payoff for R is E (X ) = Jq1 + Kq2.
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for C is always a fixed strategy.
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Strategy Lines and R’s optimal Mixed Strategy

Lets consider an example where the
payoff matrix for the row player R
is given by:

[
−1 3
2 −2

]
.

I Let [p, 1− p] denote R’s strategy. We draw a co-ordinate system
with the variable p on the horizontal axis and the variable y on the
vertical axis.

I The lines shown give the expected payoff for R for the two pure
strategies that C might pursue. These are called strategy lines.

I Their equations are y = K = 3p − 2(1− p) = 5p − 2 and
y = J = −p + 2(1− p) = 2− 3p.
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Strategy Lines and R’s optimal Mixed Strategy

I R is free to choose any value of p between 0 and 1 along the
horizontal axis for his/her strategy (p, 1− p).

I C is also free to choose a strategy which determines the expected
payoff for R.

I This minimum possible expected payoff for R for any given value of
p will be on the lowest of the two lines above p and the maximum
will be on the highest of the two lines shown.

I Our assumptions are that C responds appropriately and quickly to
reduce R’s payoff to a minimum and whichever value of p that R
chooses, R’s expected payoff will be on the lower of the two lines
(on the lines highlighted in orange).
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Strategy Lines and R’s optimal Mixed Strategy

I Given that C will hold R’s expected payoff to a minimum along the
orange line, R should choose the value of p which gives the
maximum of these minima.

I Thus R should choose the value of p at the point where both lines
meet to determine his/her strategy (p, 1− p).

I To find the value of p where the line y = 2− 3p meets the line
y = 5p − 2, we set the y values equal to each other to get
2− 3p = 5p − 2. This gives us that 4 = 8p or p = 1/2.

I Thus the best strategy for R is (1/2, 1/2) in this case.
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Optimal Mixed Strategy, General Case
If R’s payoff matrix has a saddle point, then the lines might not meet or may
meet when p = 0 or when p = 1. Otherwise (in the case where the strategy
matrix is reduced), we can solve p at the point where both lines meet.

I If the reduced strategy matrix is given by

C
C1 C2

R1 a b
R

R2 c d

the optimal mixed strategy for R is

given by (p, 1− p) where p is given
by the solution to the equation
ap + c(1− p) = bp + d(1− p) that

is when p =
d − c

(a + d)− (b + c)
.

I By similar reasoning, we get that the optimal mixed strategy for C is

given by
„

q
1− q

«
where q =

d − b

(a + d)− (b + c)
.

I Using these optimal mixed strategies for both players, we get that the
value of the game is given by

ν =
ad − bc

(a + d)− (b + c)
.
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Optimal Mixed Strategy, Football Example

In the example from Winston’s book
on football, the football team on
offense had the options of running or
passing the ball and the team on
defense could choose a run defense or
a pass defense. We used expected
gain in yards as the payoff with payoff

matrix for the offense given by:
Defense

Run Pass
Defense Defense

Run -5 5
Offense

Pass 10 0

I This is a reduced matrix, so we can apply the formulas we derived. the
optimal mixed strategy for R is given by (p, 1− p) where

p = d−c
(a+d)−(b+c)

= 0−(10)
(−5+0)−(5+10)

= −10
−20

= 1/2. R’s optimal mixed strategy

is (1/2, 1/2).

I The optimal mixed strategy for C is given by
„

q
1− q

«
where

q = d−b
(a+d)−(b+c)

= 0−5
−20

= 1
4

. C ’s optimal mixed strategy is given by„
1/4
3/4

«
I The value of the game is ν = ad−bc

(a+d)−(b+c)
= 0−50

−20
= 5

2
= 2.5

.
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Optimal Mixed Strategy, Interpretation
Defense

Run Pass
Defense Defense

Run -5 5
Offense

Pass 10 0

I the R’s optimal mixed strategy is (1/2, 1/2) means that to get the
maximum long run payoff (given that the defense plays optimally), the
offense should run the ball half of the time and pass the ball half of the
time (in an unpredictable manner)

I C ’s optimal mixed strategy is given by
„

1/4
3/4

«
means that to minimize

the long run offensive gains the defense should use their run defense 1/4
of the time and their pass defense 3/4 of the time (given that the offense
plays their best strategy.

I The value of the game is 2.5, meaning that if both players play optimal
strategies, the long run average yards gained per play by the offense will
be 2.5 yards.

I The optimal strategies give an equilibrium point, in that neither player has
an incentive to change strategy if the opponent continues with their
optimal strategy.

.
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plays their best strategy.

I The value of the game is 2.5, meaning that if both players play optimal
strategies, the long run average yards gained per play by the offense will
be 2.5 yards.

I The optimal strategies give an equilibrium point, in that neither player has
an incentive to change strategy if the opponent continues with their
optimal strategy.
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Theorem of John Von Neumann
The existence of such an equilibrium holds true for all two person
zero-sum games:
Minimax Theorem: John Von Neumann For every zero sum game, there
is a number ν for value and particular mixed strategies for both players
such that

1. The expected payoff to the row player will be at least ν if the row
player plays his or her particular mixed strategy, no matter what
mixed strategy the column player plays.

2. The expected payoff to the row player will be at most ν if the
column player plays his or her particular mixed strategy, no matter
what strategy the row player chooses.

the number ν is called the value of the game and represents the expected
advantage to the row player (a disadvantage if ν is negative).

If both players play the strategies from the theorem, the system will be in
equilibrium, since neither player should be able to increase their payoff by
unilaterally changing their strategy. Thus the long run expected payoff
for R will be ν and this is the value of the game.
.
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Optimal Mixed Strategy, Fencing Example

In our example from fencing where
both players had the option of
attacking(A) or holding back (H) at
the beginning of each bout we also
had a reduced payoff matrix for the
row player:

Cathy(C)
A H

A 0.5 -0.2
Rhonda(R)

H -0.3 0.5

I the optimal mixed strategy for R is given by (p, 1− p) where

p = d−c
(a+d)−(b+c)

. = 0.5−(−0.3)
(0.5+0.5)−(−0.3+(−0.2))

= 0.8
1.5

= 8/15. R’s optimal mixed

strategy is (8/15, 7/15).

I The optimal mixed strategy for C is given by
„

q
1− q

«
where

q = d−b
(a+d)−(b+c)

= 0.5−(−0.2)
1.5

= 7
15

. C ’s optimal mixed strategy is given by„
7/15
8/15

«
I The value of the game is
ν = ad−bc

(a+d)−(b+c)
. = (0.5)(0.5)−(−0.3)(−0.3)

1.5
= 0.16

1.5
= 1.6

15
≈ 0.11

.
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Optimal Mixed Strategy, Constant Sum Game
For a constant sum game the calculations are the same for the optimal mixed
strategy for both players and the value of the game, ν (which is the expected
payoff for R).

I If the payoffs for R and C add to K , then the long run expected payoff for
C is K − ν (as opposed to −ν for zero sum games).

.

.



Optimal Mixed Strategy, Constant Sum Game
For a constant sum game the calculations are the same for the optimal mixed
strategy for both players and the value of the game, ν (which is the expected
payoff for R).

I If the payoffs for R and C add to K , then the long run expected payoff for
C is K − ν (as opposed to −ν for zero sum games).

.

.



Example, Constant Sum Game, Basketball

Recall our example of possible
endgame strategies for basketball due
to Ruminski, where the payoff for the
offense was given as the probability of
a win for the offensive team. This is a
Constant sum game since the

probabilities add to 1.
Defending Team
Defend 2 Defend 3

Shoot 2 0.178 0.312
Offense

Shoot 3 0.5 0.228

I This is a reduced payoff matrix, so we can apply our formulas. The
optimal mixed strategy for R is given by (p, 1− p) where
p = d−c

(a+d)−(b+c)
. = 0.228−0.5

(0.178+0.228)−(0.312+0.5)
= −0.272
−0.406

≈ 0.67. R’s optimal

mixed strategy is (approximately) (0.67, 0.33).

I The optimal mixed strategy for C is given by
„

q
1− q

«
where

q = d−b
(a+d)−(b+c)

= 0.228−0.312
−0.406

= −0.084
−0.406

≈ 0.21 . C ’s optimal mixed

strategy is given by
„

0.21
0.79

«
I The value of the game is
ν = ad−bc

(a+d)−(b+c)
. = (0.178)(0.228)−(0.5)(0.312)

−0.406
= −0.115
−0.406

≈ 0.28.

.

.



Example, Constant Sum Game, Basketball

Recall our example of possible
endgame strategies for basketball due
to Ruminski, where the payoff for the
offense was given as the probability of
a win for the offensive team. This is a
Constant sum game since the

probabilities add to 1.
Defending Team
Defend 2 Defend 3

Shoot 2 0.178 0.312
Offense

Shoot 3 0.5 0.228

I This is a reduced payoff matrix, so we can apply our formulas. The
optimal mixed strategy for R is given by (p, 1− p) where
p = d−c

(a+d)−(b+c)
. = 0.228−0.5

(0.178+0.228)−(0.312+0.5)
= −0.272
−0.406

≈ 0.67. R’s optimal

mixed strategy is (approximately) (0.67, 0.33).

I The optimal mixed strategy for C is given by
„

q
1− q

«
where

q = d−b
(a+d)−(b+c)

= 0.228−0.312
−0.406

= −0.084
−0.406

≈ 0.21 . C ’s optimal mixed

strategy is given by
„

0.21
0.79

«
I The value of the game is
ν = ad−bc

(a+d)−(b+c)
. = (0.178)(0.228)−(0.5)(0.312)

−0.406
= −0.115
−0.406

≈ 0.28.

.

.



Example, Constant Sum Game, Basketball

Recall our example of possible
endgame strategies for basketball due
to Ruminski, where the payoff for the
offense was given as the probability of
a win for the offensive team. This is a
Constant sum game since the

probabilities add to 1.
Defending Team
Defend 2 Defend 3

Shoot 2 0.178 0.312
Offense

Shoot 3 0.5 0.228

I This is a reduced payoff matrix, so we can apply our formulas. The
optimal mixed strategy for R is given by (p, 1− p) where
p = d−c

(a+d)−(b+c)
. = 0.228−0.5

(0.178+0.228)−(0.312+0.5)
= −0.272
−0.406

≈ 0.67. R’s optimal

mixed strategy is (approximately) (0.67, 0.33).

I The optimal mixed strategy for C is given by
„

q
1− q

«
where

q = d−b
(a+d)−(b+c)

= 0.228−0.312
−0.406

= −0.084
−0.406

≈ 0.21 . C ’s optimal mixed

strategy is given by
„

0.21
0.79

«

I The value of the game is
ν = ad−bc

(a+d)−(b+c)
. = (0.178)(0.228)−(0.5)(0.312)

−0.406
= −0.115
−0.406

≈ 0.28.

.

.



Example, Constant Sum Game, Basketball

Recall our example of possible
endgame strategies for basketball due
to Ruminski, where the payoff for the
offense was given as the probability of
a win for the offensive team. This is a
Constant sum game since the

probabilities add to 1.
Defending Team
Defend 2 Defend 3

Shoot 2 0.178 0.312
Offense

Shoot 3 0.5 0.228

I This is a reduced payoff matrix, so we can apply our formulas. The
optimal mixed strategy for R is given by (p, 1− p) where
p = d−c

(a+d)−(b+c)
. = 0.228−0.5

(0.178+0.228)−(0.312+0.5)
= −0.272
−0.406

≈ 0.67. R’s optimal

mixed strategy is (approximately) (0.67, 0.33).

I The optimal mixed strategy for C is given by
„

q
1− q

«
where

q = d−b
(a+d)−(b+c)

= 0.228−0.312
−0.406

= −0.084
−0.406

≈ 0.21 . C ’s optimal mixed

strategy is given by
„

0.21
0.79

«
I The value of the game is
ν = ad−bc

(a+d)−(b+c)
. = (0.178)(0.228)−(0.5)(0.312)

−0.406
= −0.115
−0.406

≈ 0.28.

.

.



Example, Constant Sum Game, Basketball
Defending Team
Defend 2 Defend 3

Shoot 2 0.178 0.312
Offense

Shoot 3 0.5 0.228

I The optimal mixed strategy for R is (0.67, 0.33).

I The optimal mixed strategy for C is
„

0.21
0.79

«
I The value of the game 0.28. This means that if both players play

optimally and the scenario is repeated many times, the Offense can expect
to win about 28% of the time.

I This means that if both players play optimally and the scenario is repeated
many times, the Offense can expect to win about 28% of the time (and
this is the best that they can do if their opponents play optimally).

I This expected payoff for the defense is 1− ν = 1− 0.28 = 0.72. This
means that if both play optimally, then the defense can expected to win
about 72% of the time in when this scenario arises.
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Reducing a matrix: Baseball
Lets look at a batter vs. Pitcher scenario again where the payoff matrix is given
below (different from the previous batter/pitcher matrix):

Pitcher
Fastball Change-up Slider

Fastball 0.38 0.37 0.39

Change-up 0.25 0.4 0.41
Batter

Slider 0.35 0.32 0.45

None 0.38 0.3 0.42

I We cannot use our formulas directly here, because this is a three by three
matrix.

I We can however reduce the matrix to a reduced two by two matrix, by
striking out dominated strategies. The strategy “slider” is dominated for
the column player and when we strike that out, the strategies “Anticipate
Slider” and “Anticipate None” are dominated for the batter in the
reduced matrix.

.
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Reducing a matrix: Baseball

The reduced matrix is

Pitcher
Fastball Change-up

Fastball 0.38 0.37
Batter

Change-up 0.25 0.4

I We can now use our formulas to find the optimal strategy for both
players. The optimal mixed strategy for R is given by (p, 1− p)
where p = d−c

(a+d)−(b+c) . = 0.4−0.25
(0.38+0.4)−(0.37+0.25) = 0.15

0.16 = 15
16 . R’s

optimal mixed strategy is (approximately) (15/16, 1/16).

I The optimal mixed strategy for C is given by
„

q
1− q

«
where

q = d−b
(a+d)−(b+c) = 0.4−0.37

0.16 = 0.03
0.16 ≈ 0.21 . C ’s optimal mixed

strategy is given by
„

3/16
13/16

«
I The value of the game is

ν = ad−bc
(a+d)−(b+c) . = (0.38)(0.4)−(0.25)(0.37)

0.16 = 0.0595
0.16 ≈ 0.37.

I Since the payoffs are given as expected runs created by the batter,
the average number of runs created per pitch for the batter in the
long run will be 0.37 if both players play optimally.
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